\qquad

Quiz 6 Sample

Question 1. (5 pts)
Verify that the rotation matrix $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is an orthogonal matrix.

Solution: By definition, we only need to check that

$$
A A^{T}=A^{T} A=I_{2}
$$

This is a straightforward calculation. I leave it for you to verify the details.

Question 2. (5 pts)
Let $u_{1}=(1,0,1), u_{2}=(-1,0,1)$ and $u_{3}=(0,1,0)$. We know that $S=\left\{u_{1}, u_{2}, u_{3}\right\}$ is an orthogonal basis of \mathbb{R}^{3}. Now suppose $v=(0,3,4)$. Find the coordinates of v with respect to the basis S.

Solution: Since u_{1}, u_{2} and u_{3} are orthogonal, we can use the formula

$$
v=\frac{\left\langle v, u_{1}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle} u_{1}+\frac{\left\langle v, u_{2}\right\rangle}{\left\langle u_{2}, u_{2}\right\rangle} u_{2}+\frac{\left\langle v, u_{3}\right\rangle}{\left\langle u_{3}, u_{3}\right\rangle} u_{3}=2 u_{1}+2 u_{2}+3 u_{3}
$$

It follows that

$$
[v]_{S}=\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right]
$$

Question 3. (10 pts)

Let U be the subspace of \mathbb{R}^{4} spanned by $v_{1}=(1,1,1,1), v_{2}=(1,1,2,4)$ and $v_{3}=$ $(1,2,-4,-3)$. Use the Gram-Schmidt process to find an orthonormal basis of U.

Solution: This is Exercise 7.21 on Page 249 of the textbook.

